ywtl.net
当前位置:首页>>关于数学二次函数的基本性质有哪些的资料>>

数学二次函数的基本性质有哪些

对二次函数f(x)=ax²+bx+c, 1、开口方向;(a>0,开口向上;a

二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,开口方向向上,a

解:一般是y=ax^2+bx+C 顶点时:y=a(x-m)^2+k 坐标是:y=a(x-x1)(x-x2) 这三个表达式能够互相转换, 任何一个表达式能够哦转化为另外两个表达式。

a: a分为两部分:符号和大小(即绝对值) 符号:正号说明开口向上,负号说明开口向下 大小:a的绝对值越大,抛物线开口越小(瘦).a的绝对值越小,抛物线开口越大(胖). b: b不能单独判断,要与a结合判断,有个口诀心法:左同右异(左右是指抛物线...

抛物线的性质 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a ) 当-b/2a=0时,P在y轴上...

一次函数:物理应用 二次函数:物理应用 指数函数:细菌数随时间变化 幂函数:银行存款计复利 对数函数:实际中某种生物的数量随时间变化 注意:符合幂函数和对数函数的必须是y=a^x,y=loga(x)(a>0,a≠0)

一元一次和一元二次一般是对方程而言的。函数叫一次函数和二次函数。 一次函数是y=kx+b,(k≠0)的形式,函数图像是一条过直线。 二次函数是y=ax^2+bx+c,(a≠0)的形式,函数图像是抛物线。

二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a

1.二次函数是抛物线,但抛物线不一定是二次函数。开口向上或者向下的抛物线才是二次函数。抛物线是轴对称图形,不是中心对称图形。对称轴为直线。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)...

函数其实在初中的时候就已经讲过了,当然那时候是最简单的一次和二次,而整个高中函数最富有戏剧性的函数实际上也就是二次函数,学好函数总的策略是掌握每一种函数的性质,这样就可以运用自如,有备无患了.函数的性质一般有单调性、奇偶性、有界性及...

网站首页 | 网站地图
All rights reserved Powered by www.ywtl.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com