ywtl.net
当前位置:首页>>关于二次函数y=ax*2+bx+c的性质是什么?的资料>>

二次函数y=ax*2+bx+c的性质是什么?

二次项系数a决定二次函数图像的开口方向和大小. 当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口. |a|越大,则二次函数图像的开口越小. 决定对称轴位置的因素 一次项系数b和二次项系数a共同决定对称轴的位置. 当a与b同号时(即ab>0),...

a代表二次项系数,表示二次函数的开口方向,a>0,则开口向上;a

B 试题分析:∵抛物线和x轴有两个交点,∴b 2 ﹣4ac>0,∴4ac﹣b 2 <0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2...

∵抛物线与y轴的交点在点(0,-1)的下方.∴c<-1;故A错误;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=-b2a>0,∴b<0;故B错误;∵抛物线对称轴为直线x=-b2a,∴若x=1,即2a+b=0;故C错误;∵当x=-3时,y>0,∴9a-3b+c>0,即9a+c...

如果开口向上则a为正,如果开口向下则a为负;函数的对称轴为—b/2a,已知a和对称轴的正负可判断b的正负;当x=0时,y=c,看图像即可知道c的正负。

∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2-4ac>0,∴4ac-b2<0,∴①正确;∵对称轴是直线x=-1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(-3,0)和(-2,0)之间,∴把(-2,0)代入抛物...

由图象可知:抛物线与x轴交于两个点,∴b2-4ac>0,选项(1)正确;由函数图象可得0<c<1,选项(2)错误;由抛物线的对称轴的位置可得:-1<-b2a<0,又抛物线开口向下,∴a<0,不等式-1<-b2a变形得:2a<b,即2a-b<0,选项(3)正确;由函数...

①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②当x=-1时,y=a-b+c<0,即b>a+c,故②错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=-b2a=1,即a=-b2,代入得9(-b2)+3b+c<0...

(1)当y=0时,函数图象与x轴的两个交点的横坐标即为方程ax2+bx+c=0的两个根,由图可知,方程的两个根为x1=1,x2=3.(2)根据函数图象,在对称轴的右侧,y随x的增大而减小,此时,x>2.(3)如图:方程ax2+bx+c=k有两个不相等的实数根,即函数...

网站首页 | 网站地图
All rights reserved Powered by www.ywtl.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com